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Neural network analysis of overturning response
under near-fault type excitation
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Abstract: Under strong seismic excitation, a rigid block will uplift from its support and undergo rocking oscillations
which may lead to (complete) overturning. Numerical and analytical solutions to this highly nonlinear vibration problem
are first highlighted in the paper and then utilized to demonstrate how sensitive the overturning behavior is not only to the
intensity and frequency content of the base motion, but also to the presence of strong pulses, to their detailed sequence, and
even to their asymmetry. Five idealised pulses capable of representing “rupture—directivity” and “fling” affected ground
motions near the fault, are utilized to this end : the one—cycle sinus, the one—cycle cosinus, the Ricker wavelet, the truncated
(T)-Ricker wavelet, and the rectangular pulse “Overturning—Acceleration Amplification” and “Rotation” spectra are
introduced and presented. Artificial neural network modeling is then developed as an alternative numerical solution. The
neural network analysis leads to closed—form expressions for predicting the overturning failure or survival of a rigid block,
as a function of its geometric properties and the characteristics of the excitation time history. The capability of the developed
neural network modeling is validated through comparisons with the numerical solution. The derived analytical expressions
could also serve as a tool for assessing the destructiveness of near—fault ground motions, for structures sensitive to rocking
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with foundation uplift.
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1 Introduction

The discovery on the ground surface after an
earthquake of slender blocks standing vertically or
lying on their side (overturned), has for many years
provided upper-bound and lower—bound estimates
of the peak ground acceleration. The fallacy that the
acceleration needed to just overturn a block is the
one obtained from moment equilibrium between the
statically—applied inertia force and the weight of the
block, prevailed for nearly a century and has led to the
universal establishment of unrealistically low levels of
ground acceleration (of the order of 0.05g to 0.10g, even
in areas of high seismicity). Unfortunately, much greater
acceleration levels are needed for overturning under
seismic shaking, especially for large blocks and at high
frequencies. Ironically, this was already known (even if
incompletely) as early as 1893 (Milne and Omori), while
by 1927 Kirkpatrick had published a simple formula for
estimating the “dynamic” overturning acceleration,
which captured the role of the basic problem parameters
with sufficient degree of realism (Eq. (7) herein).
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In the subsequent 40 years the lack, or scarcity,
of accelerographs prompted many researchers and
earthquake engineers to study the overturning behavior
of slender bodies. However, the dynamic character of
the overturning behavior was not widely understood
by the engineering community until Housner’s (1963)
publication, in which he derived overturning criteria and
showed the importance of both frequency of excitation
and size of structure.

The subject of overturning of blocks and structures
under seismic excitation has in recent years received
renewed attention, fueled by a variety of structural and
non-structural elements (ranging from ancient columns,
to electrical transformers, to trains, to buildings) toppled
in numerous recent earthquakes, including those of
Kocaeli 1999, Athens 1999, and Diizce 1999 (Apostolou
and Gazetas, 2005). Makris and Roussos (1998) and
Anooshehpoor et al. (1999), in particular, focused on
the transient response of rigid blocks under near—fault
ground shaking. They found that distinguishable
long—duration pulses inherent to such shaking may
be particularly detrimental to the rocking response of
slender structures. Many examples of such pulses have
been uncovered in near—fault records of recent M, > 6.5
earthquakes, such as the Imperial Valley 1979, Erzincan
1992, Northridge 1994, Kobe 1995, Kocaeli 1999, and
Chi—Chi 1999. These pulses are the result of two effects:
the “forward rupture directivity” effect and “permanent
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offset” (or “fling”) effect (Somerville, 2003; Hisada and
Bielak, 2003; Abrahamson, 2001).

In light of the above, the present study investigates
the overturning potential of near-fault ground motion,
represented for simplicity and clarity with the following
idealized pulses : the Ricker-wavelet, the (truncated)
T-Ricker wavelet, the one-cycle sinus, the one-cycle
cosinus, and the rectangular half-cycle pulse. Their time
histories are plotted in Fig. 1. The capability of these
idealised pulses to represent actual near—fault records
has been shown by Makris and Roussos (2000) and it is
further demonstrated in this paper.

/\/One-sine M One-cosine
Wer H Rectangular /\T—Ricker

Fig. 1 Idealized pulses utilized in this study to represent
near-fault ground motion

2 Overturning response of rigid blocks

Consider a rigid rectangular block with aspect ratio
b/h (half width / half height ratio) simply supported
on a rigid base, which is oscillating horizontally. The
coefficient of friction is adequately large so that sliding
is prevented. As long as the overturning moment of
the inertia force (magh), where a, = ag(t) = the base
acceleration, does not exceed the restoring moment
(mgb) about the base edge, the block remains attached
to, and follows the oscillation of, the base. As soon
as the restoring moment mgb is exceeded, uplifting
occurs setting the block on rocking motion. The system
configuration is illustrated in Fig 2.

Under pseudo-static conditions, once uplifting
is initiated about the corner point, the body will
unavoidably overturn. In other words, the critical
acceleration for uplifting is identical with the minimum
required to statically overturn the block. It is given by
the so called “West formula” (Milne and Omori, 1893);
in units of g:

aover,stat = ac = ;l— (1)

On the other hand under dynamic base excitation,
exceeding a_simply initiates rocking. Whether the block
will eventually overturn or not depends on its size and
slenderness, as well as on the nature and intensity of
ground shaking. The response is determined by the
governing equation of motion :

6(t)=-p* {sin [6, sgn0(r) - 6(1)] + ax, cos[6, sgn 6(f) — 9(:)]}
@)

F—2b—

Fig. 2 Rocking on a rigid base due to earthquake shaking:
system configuration. '

where: 6(r)<0 (or >0) denotes the angle of rotation
about O (or, respectively, about 0°); 6, =arctan(b/h)
is the angle shown in Fig. 2; and p=./mgR/l, is a
characteristic frequency parameter of the block; R is
half the diagonal of the block. For a solid rectangular
block the moment of inertia about_its pivot point is
I, =(4/3)mR’?, and therefore p=+/3g/4R .

When a rigid body is rocking back and forth about
its pivot points, it impacts the ground and loses a part
of its kinetic energy, even in a purely elastic impact. Its
angular velocity right after the impact (at time 7 *) is a
fraction of that just prior to impact (at time z °):

0’y =r 0°) €))

where r is known in the literature as the coefficient of
restitution. An upper bound of r can be obtained by
applying the momentum preservation and neglecting
energy loss during impact :

3 2
r=(1——2-sin2 Gc) )

In reality, some additional energy is lost, depending on
the nature of the materials at the impact surface.

The rocking response of a rigid block can be obtained
at any time increment through numerical integration of
Egs. (2) and (3). For slender blocks however, Eq. (2)
can be reduced to the following piecewise linearized and
dimensionless form:

O -0 =-Acos(2r+¥)—sgn® )

inwhich ©=6/60,, A=a,/a,, Q =w,/p , T=pt
and g are respectively the dimensionless rotational
angle, the “dynamic” amplification of the overturning
acceleration, the frequency ratio, time and phase shift.
For harmonic excitation the analytical solution of Eq. (5)
is (Spanos and Koh, 1984):
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O (r)=a" sinht + B coshz +1+ycos(Qr +¥), 6>0

(6a)
O (1)=o sinh7t+ f cosht —1+ycos(Rr+¥), 6<0
(6b)
where o, o, B, f are integration constants and

y=—A/(1+Q%).

The computed time-history of the rocking response
with one of the above-discussed procedures can be used
to derive minimum acceleration levels for overturning.
To this end it should be postulated that the required time
for marginal overturning to occur is infinitely large.

3 Sensitivity to problem parameters
3.1 Block size and excitation frequency

The major outcome of the nonlinear nature of
rocking motion is that for a specific type of ground
motion, the required acceleration for overturning is
a sensitive function of both the block size and the
excitation frequency. This has been recognized by
many researchers since more than a century (Milne and
Omori, 1893). Eighty years ago, Kirkpatrick (1927),
assuming small rotations and slender structures, was the
first to quantify the effects of the two afore mentioned
parameters on the overturning response. For a sinusoidal
excitation he derived analytically the necessary
acceleration for overturning :

b f ;o
aover=zg 1+(£;£) ‘ (7)

Housner (1963) studied thoroughly the overturning
response under pulse-type and white-noise excitation
and re-derived Eq. (7) for the case of a half-sine pulse.
This simplified formula is a good approximation of the
exact solution for steady-state harmonic excitation.
However, for the case of a half-sine pulse, it was
based on a conceptually incorrect overturning criterion
(6(2)=6, when the pulse expires) and it turns out to be
unconservative (Makris and Roussos, 1998). It will be
seen in the sequel, that a rocking block may temporarily
experience 6(7)>0_ by an ample margin, without failure.

Using cycloidal pulses Makris and Roussos (1998,
2000) unveiled the detrimental role of long-period
pulses inherent in near-fault ground shaking. Using the
simplified solution (Eq. (6)) they derived a closed-form
expression for the minimum acceleration amplitude of a
one-sine pulse for overturning to occur. Their analytical
and our numerical solution are compared in Fig. 3(a) for
r=0.8.

Evidently, increasing the frequency
Q=aw;/p=5.45 of the pulse and the size of the block
(i.e. decreasing the parameter p) affects favourably
the overturning response. Note that for sufficiently

high frequency pulses the required acceleration for
overturning can be substantially larger than the critical
static value a =b/h. As an example, for excitation period
of 0.3 sec and block diameter of 0.5 m the frequency
ratio is 2=/ p=5.45 which leads to a minimum
acceleration about 4 times the static acceleration
(A=4) . On the other hand, an excitation period of 1
sec could be regarded as a static loading as for the same
block diameter it results to a minimum acceleration that
tends to the static value (4=1.2 ).

The profoundly nonlinear-dynamic nature even of
the piecewise linear system is not reflected only on
the minimum acceleration amplitudes. In Fig. 3 notice
that a one-cycle pulse may overturn a block either after
one impact (mode 1) or without impact at all (mode 2).
A “safe region” is revealed between the two modes,
meaning that while the block overturns for a certain
level of shaking, it surprisingly remains standing when
the amplitude increases.

3.2 Asymmetry and detailed sequence of pulses

In the foregoing, the sensitivity of the overturning
response to the size of the block and the frequency of
excitation was discussed under a one-cycle sinus pulse.
In Fig. 3(b) the overturning spectrum for the case of a
one-cycle cosinus pulse is presented for the analytical
solution of Makris and Zhang and our numerical
solution of Eq. (5). The difference in the block behavior
in response to the two pulses is remarkable. For all
frequency ratios (Q larger values of acceleration are
now required to overturn the block (compared with the
sinus pulse case). Also, the critical value of the frequency
ratio beyond which only overturning without impact
can occur has dropped down to about 4. The beneficial
effect of the cosine pulse with respect to the sine pulse is
attributed merely to the phase shift of n/2.

Moreover while cycloidal pulses are reasonable
idealizations of near-fault ground motions, they cannot
fully capture the effect of a slight asymmetry inherent to
near—fault pulses. The “Ricker wavelet” has a distinct
advantage in this respect, and is thus employed here to
excite the rectangular block in rocking oscillations (with
r=0.8). As seen in the overturning spectrum plotted in
Fig. 3(c), more failure loops “appear” in this case. Also
there is no distinction between overturning with one or
no impact as derived from the time-histories of Fig.4.
The difference between two “neighbouring” loops is
now in the direction of toppling.

3.3 Overturning potential of large structures

An important question is whether high-rise
buildings or tall bridge piers may safely uplift from their
foundation under very strong shaking. Although such
tall structures are unlikely to behave as rigid blocks, and
their (unavoidable) flexibility is a favourable factor, the
rigid block assumption may give a conservative glimpse
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Fig. 3 Overturning amplification ratio (i.e. ratio of dynamic
overturning acceleration, a« _ to the pseudostotic
overturning acceleration « ) for slender blocks
under different pulses compared by : (i) numerical
integration of equation of motion (circles) and (ii)
the analytical formula derived by Makris and Zhang
(solid lines). The coefficient of restitution is 0.8.

on the threat of overturning. The beneficial effect of
increased block size to overturning response is already
known. However, with very tall and slender buildings,
the slenderness ratio 4/b is also large.

The interplay between slenderness and size regarding
overturning is clarified with the help of a rectangular
block of a constant half-width b. In the plots of Fig. 5 the
height of the block is gradually increased so that both its

slenderness (4/b) and its frequency parameter (p) keep
rising. Initially, a block of 5=0.5 m and #=1.0 m is set
on rocking under a long-duration one-cycle sinus pulse
of T, = 0.8 sec; to topple it, a peak ground acceleration
of 0.7 g is needed. By increasing /# by a mere 1 m, the
overturning acceleration drops to 0.35 g — an example
of detrimental influence of slenderness. However, as the
height of the structure is further increased, the decrease
of the overturning acceleration diminishes and the
beneficial effect of the size parameter gradually takes
over. Paradoxically, after reaching a minimum about
0.18 g the overturning acceleration tends to increase, not
decrease, with increasing height and slenderness! All that
happens is that the size effect overshadows the influence
of the slenderness and becomes the prevailing parameter
on the overturning response. Hence for a sufficiently tall
structure of a certain width, the more slender is made the
less vulnerable to overturning it will be! Thus, we can
explain why large slender structures survive toppling
even under severe seismic shaking. In the experimental
work of Huckelbridge and Clough (1978) it was made
clear that for a practical building, transient uplifting
response would in no way imply imminent toppling.

3.4 Resemblance of near-fault ground motions with
idealized pulses

The resemblance of near-fault ground motion with
cycloidal symmetric pulses has been demonstrated by
Anooshehpoor et al.,(1999), Makris and Roussos (1998;
2000). Asymmetric pulses can be represented with a
Ricker or a T-Ricker wavelet. For example the directivity
affected Diizce record (in the Kocaeli 1999 earthquake)
is compared with a Ricker wavelet (4,,=0.28g and
T.=1.3s) in Fig. 6. The two time histories excite in
rocking a slender block (6 =0.2rad) for different values
of the period parameter 7,=2n/p. The resulting spectra of
peak rotational angle §__ and of minimum acceleration
level for overturning (derived by scaling up and down
each motion). Evidently the simple Ricker pulse can
simulate the long-duration pulse inherent in the Diizce
record for all values of 7. This almost excellent
agreement (with respect to rocking) of the Diizce record
with a simply fitted Ricker wavelet indicates that the
rocking and overturning is practically unaffected by the
high-frequency acceleration peaks that are ever present
in every strong accelerogram.

4 Elements of neural network analysis
4.1 Introduction: the need

As it was demonstrated in the preceding paragraphs,
with near—fault type of ground shaking the block
uplifting—overturning behavior is sensitive not only to the
amplitude and frequency characteristics of the excitation,
but moreover to the presence in the excitation of crucial
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Fig. 4 Time-histories of the rocking response for a rectangular block with 25 = 1 m and 24 = 5 m subjected to a Ricker-wavelet
excitation of f, = 0.53 Hz. The coefficient of restitution is 0.89 (elastic impact).

long—duration pulses. Even the sequence of such pulses
is dominant (compare the difference in response to
sinus and cosinus excitation). Predicting such important
“details” of a ground motion is clearly an uncertain
if not formidable task. In addition, the computational
effort of a complete parametric study of this nonlinear
vibration problem is not a routine operation. All these
make it desirable to explore the feasibility of alternative

approaches that allow a quick simplified determination
of the ground motion dependent risk of overturning.
The latter task can be formulated as a pattern
recognition problem. Of the numerous techniques that
are available for such a problem, artificial neural network
modeling seems the most prominent. Several studies
have been already published utilizing artificial neural
networks as an alternative method for such problems
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Fig. 6 Rocking and overturning spectra for blocks with 4/b = 5 (critical angle 6_= 0.2 rad) subjected to the time-histories of: (a)
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as liquefaction (Tung et al., 1993; Goh, 1994; Wang
and Rahman, 1999; Baziar and Nilipour, 2003), soil
amplification in two dimensions (Faccioli ef al., 1998;
Hurtado et al., 2001), response of seismic isolation
systems (Burton et al., 1996), cyclic material behavior
(Ghaboussi et al., 1991) correlation of geotechnical
parameters (Akbulut et al., 2004), and earthquake hazard
analysis (Habibagahi, 1997; Giacinto ef al., 1997).

One of the main advantages of a néural network
modeling against other conventional numerical models
is that, after the “network training”, an approximate
analytical solution can be derived even for complicated
problems.

An artificial neural network is developed in this study
for predicting the overturning response of rigid blocks
subjected to near—fault type seismic motions at their
base. The neural network analysis leads to a closed—form
analytical expression for the overturning acceleration of
the rigid block as a function of its geometric properties
and the features of the aforementioned idealised pulses.
The expression is used to parametrically investigate the
problem and is subsequently applied to measure the
“destructiveness” of recorded near—fault accelerograms
measured in terms of the produced rocking response.

4.2 The multi layer perceptron neural network

There are several types of neural network models.
A multi layer perceptron (MLP) for pattern recognition
is developed in this work for studying the overturning
response of rigid blocks to near—fault type seismic
* motions.

The basic architecture of a multi layer neural
network is shown schematically in Fig 7. An MLP
network consists of at least three layers: (a) the input
layer that receives the vector of input, variables of the
problem, and passes the information to the network
for processing, (b) the hidden layer which is a layer of
neurons that receives information from the input layer
and processes it in a hidden way to the posterior hidden
layer or to the output layer, and (c) the output layer
that receives processed information and produces the
response of the system. In a feed forward network the
units in each layer are not allowed to be inter-connected,
whereas each layer can be connected only with the most
posterior layer.

Each layer has a weight matrix, w, a bias vector, b,
and an output vector, y. Each element of the input vector,
X, is connected to each neuron input through the weight
matrix, w. The neuron output, o, is a scalar number; it is a
nonlinear function (known as the transfer or “activation”
function) of the sum of the outputs of all neurons in the
most anterior layer (the neuron input net):

9; (”etf)=f(zwy'xi +bj) ®

The neuron outputs of a layer, form the layer output
vector, y.

The effectiveness of a neural network to simulate
highly non-linear problems is partially attributed to
the transfer function used for processing the output of
a neuron. There are several types of transfer functions,
the appropriate choice of which depends strongly on
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Fig. 7 Schematic illustration of the architecture of a multi layer perceptron (MLP) feed forward neural network

the nature of the problem and the type of employed
neural network. For function approximation problems
a combination of the symmetric sigmoid (i.e., the
hyperbolic tangent) function

f(x) = tanh(x) ®

for the hidden layer units with the linear function for
the output layer units is usually the most promising.
However, for pattern classification problems the /ogistic
sigmoid (S—Shaped function),

1
/() 1 + exp(—x) (10)
shall be used as the activation function of the output
layer units, instead of the hyperbolic tangent.

The topology of a network (number of the hidden
layers and units), affects strongly the result. Theoretical
results indicate that a network with two hidden layers
and enough hidden units can approximate any nonlinear
function to any required degree of accuracy. In other
words, any function can be expressed as a linear
combination of components containing hyperbolic
tangent functions. However, having too large a hidden
layer or too many hidden layers can substantially
degrade the network’s performance.

Several algorithms have been used for determining
the optimum topology of a neural network given a
specified problem, the most promising of which are
the genetic and direct search algorithms. Nevertheless,
network architecture with satisfactory performance
can also be developed using trial and error methods
(growing and pruning networks). This is the method we
adopted in this work

4.3 Learning rule
The learning rule is an algorithm that is used to adjust

the weight and biases of the network to achieve the
desired network behavior. The back—propagation rule is

the most popular and has been successfully used to train
multi layer networks for function approximation and
pattern classification. According to this rule the network
weights and biases are adjusted in order to minimize
the error (or performance) function of the network.
The network weight and biases are continuously being
updated until the minimization of the network error
function. Derivatives of the error function are, first,
calculated for the network’s output layer and, then,
back—propagated through the network until they reach
all units of the hidden layers.

The most important features of the back propagation
algorithm are the error and the training function. The
selection of an appropriate error function depends on
the nature of the problem. The mean—squared error is
ideal for a function approximation problem, whereas the
“cross—entropy” error, in conjunction with the logistic
sigmoid as the activation function of the output layer, is
the most suitable combination to use in binomial (two—
class) or multinomial classification problems.

Several training functions have been developed to be
used in conjunction with the back propagation learning
rule, which can be classified into three main categories:
(a) the gradient descent, (b) the conjugate gradient, and
(¢) the quasi—Newton algorithm.The quasi—-Newton
algorithm has been shown to converge faster than the
conjugate gradient one (MATLAB, 2000). It is based on
Newton’s method, but which does not require calculation
of the second derivatives of the Hessian matrix,
which is a complex and expensive procedure for feed
forward neural networks. The Lavenberg—Marquardt
optimization algorithm (MATLAB, 2000) is a
quasi—-Newton algorithm designed to approach
second—order training speed without having to compute
the Hessian matrix. The Lavenberg—Marquardt training
function is used in this work for network training.

4.4 Training

Training is the process that repeatedly applies
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input vectors to the network and calculates errors with
respect to the difference between the target and the
output vectors. The weight and bias of each neuron in
the network is then updated with the learning rule after
each training cycle / “epoch”. This procedure is repeated
until the network error falls beneath an error goal, or a
maximum number of epochs have occurred.

In pattern recognition problems, the network learns
during training phase how to classify the patterns (the
input variables of the problem) in several significant
cases. This could be based either on “expert” opinion,
or on the results of conventional numerical analysis, or
on experimental and field data. The more “instructive”
the training phase, the more reliable the classification
provided by pattern recognition algorithms. In the
present case the data set for the training phase comprises
results from conventional numerical modeling of the
problem by the use of Egs. (2) and (3).

The goal of a satisfactory training, apart from
reaching the error goal, is to make the neural network
capable of generalization. That means that the network
performance does not deteriorate significantly if new
input data (different to those we use for training) are
presented to the network. The inability of aneural network
to generalize after the training is called overfitting. One
method for improving network generalization is to
use a network that is just large enough to provide an
adequate fit. The larger a network is, the more complex
the functions it can create. A very small enough network
will not have enough power to overfit the data. Since
it is difficult to know beforehand how large a network
should be for a specific application, except from the
traditional early stopping method, several methods have
been developed recently (MATLAB, 2000) to prevent
overfitting. The most efficient of which are : (a) the
Bayesian regularization, (b) the training with noise,
and (c) the hybrid training (based on a combination of
batch with incremental training). The reader is referred
to the MATLAB user’s manual for more detailed
documentation.

The efficiency of each of the above methods depends
on the nature of the problem. No well defined rule exists
for whether or not to a specific overfitting method is
more beneficial to the network performance than others.

5 Neural network anmalysis and results

5.1 Multilayer perceptron (MLP) neural network
utilized in this study

The MLP network used in this study, is schematically
illustrated in Fig. 8. It consists of three layers. The input
layer comprises four input neurons representing the
following parameters (patterns) :

o the peak ground acceleration 4, ,,

e the critical acceleration of the rigid block a ,

o the characteristic cyclic frequency w of the ground
acceleration time history, and

o the frequency parameter p of the rigid block
(= \3g/4R).

The hidden layer consists of twenty neurons with the
symmetric sigmoid as the “activation” function. Since the
problem is a binomial (two—class) pattern classification
problem, the output layer has a single neuron and binary
target values: 1 for overturning of the rigid block, and
0 for not overturning. The logistic sigmoid is used
as the “activation” function of the output layer. The
calculation of the network weights and biases is based
on the minimization of the cross—entropy error function,
by setting the error goal to be smaller than 1%. Training
of the neural network is achieved with the mathematical
computer code MATLAB. The batch training method is
applied in conjunction with the Lavenberg—marquardt
training function (MATLAB, 2000).

The input data base used for training the neural
network consists of results from the exact solution of
the problem, Egs. (2) and (3), by setting the coefficient
of restitution, #, equal to 0.8 (slightly inelastic impact).
Specifically, 15000 data points were used for each one of
the five trigonometric pulses. To prevent overfitting the
network performance is tested for each of the techniques
described in Section 3. The “Early Stopping” method
was found to give the best results.

The mathematical formulation of the neural network
after the training, is expressed as :

1

1+exp|:—2w2i tanh(z wy, X, +b1iJ~b21| )

y:
i=1 j=1

where m = 4 and n = 20 are the numbers of neurons in
the input and the hidden layer, respectively. w,, and
b,, are the weights and biases of the hidden layer, and

Overturning  No over-
1) turning (0)

Pulses used for training the ANN

4% e S

i One-sinus One-cos  Ricker T-Ricker Rectangular

Fig. 8 Schematic illustration of the neural network used for
the overturning response analysis of a rigid block
subjected to near—fault type seismic motions
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w,, and b, the weight and bias of the output layer. The functi :
ction of x, according to
welght and bias values associated with each of the five J &
trigonometric pulses used in our analysis, are presented 5 = X; —minx, 1
in Tables 1 through 5. X; is the normalized input vector YT maxx. —minx. (12)
J J

with respect to the minimum and maximum values of
the problem parameters x, (x= APG, x,= o, , x,= o, and
x,= p), used in the analy51s X; is expressed as a linear

The (min, max) values of parameters x, are: ( 0.05¢,
4¢), (0.05g, 0.30g), (0.628 rad/s, 41.88 rad/s) and (0 5

Table 1 Weights and biases for the one—cycle sinus pulse

Hidden layer Output layer
wliJ bli w2i b2

-5.38 5.44 443 -3.31 2.65 -143.98 -119.09
-2.51 -0.78 2.88 -0.28 -1.99 76.68
-55.52 39.22 1.34 -28.01 23.26 -30.71

9.66 -5.15 6.76 -1.63 18.30 -37.11

-0.56 0.46 -4.04 -1.69 -6.07 81.67

-3.35 2.79 2.43 1.77 3.05 -37.89

1.88 -0.02 -1.80 1.21 0.67 115.75

-0.69 0.41 2.76 -1.32 0.65 -107.28

25.67 -13.56 -12.76 8.02 4.98 -104.92

-0.07 0.07 1245 -11.31 -1.00 -232.08

-4.38 0.03 -0.12 1.18 -3.55 -146.00

2.1 2.26 2.74 -4.54 -0.87 -22.00

19.78 -9.85 -5.46 243 3.86 52.41

-0.74 -0.37 -5.37 3.67 - =207 100.30

29.20 -2.41 -1.21 -0.05 25.58 239.48

-2.59 291 -1.67 0.68 1.11 -146.01

28.26 -15.02 -27.18 135.56 120.80 57.43

26.87 -1.80 3.44 -1.99 25.55 -105.58

2.66 1.76 2.16 -0.45 640 187.92
-62.86 11.02 57.01 -89.68 -84.24 44.97

Table 2 Weights and biases for _the one—cycle cosinus pulse

Hidden layer

Output layer

Wy b 1i Wy bz
-2.51 0.69 25.48 -5.28 18.99 -78.95 -109.71
6.82 -6.28 -12.70 3.32 -11.28 -75.19
-10.19 3.56 2.62 ©0.90 11.29 -107.21
-3.98 0.22 © 1390 -4.44 5.06 -92.19
-3.20 1.24 2.98 -0.45 0.64 -117.66,
0.93 0.07 -20.58 1.32 -19.61 58.60
-3.19 1.42 -4.55 0.53 -5.73 -80.91
-0.81 -0.09 -67.82 29.08 -33.67 201.54
13.24 -3.92 -12.78 3.82 -0.14 -88.27
4.75 -4.92 -0.20 0.55 -2.55 . 156.02
-4.16 0.28 -7.62 3.09 -8.28 -27.23
2.24 -0.47 -13.03 1.00 -11.43 -79.95
2.92 -1.72 -15.21 5.72 -8.92 17.24
1.13 -0.68 -0.16 0.42 -0.29 -157.47
15.59 19.84 3.06 -10.22 14.69 -1.20
68.31 -5.16 -5.79 0.40 58.58 215.35
15.00 -4.71 -3.76 2.58 8.23 51.74
-3.52 1.47 3.97 -1.18 0.74 193.85
-1.41 0.93 3.75 -1.61 271 -184.25
1.41 - 0.72 -2.63 2.03 2.43

-116.47
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rad/s, 5 rad/s), for 4

PG’ ac’

5.2 Comparison with exact solution

w, and p, respectively.

The capability of the neural network model to predict
the overturning response of rigid blocks subjected to
near—fault type seismic motions is demonstrated by

comparison with results from exact numerical solution
of the system of the governing Eqs. (2) and (3).

Figure 9(a) plots the overturning acceleration
spectrum of a free standing rigid block with a height of
2.58 m and a base width of 0.64 m; these values imply
h/b=4,a =025 gand p = 2.14 rad/s. The block is
subjected to one—cycle sinus pulse of frequency f (= @

Table 3 Weights and biases for the Ricker pulse

Hidden layer Output layer
Wlij bli W2i ) b2
-2.46 6.97 14.69 -11.34 -13.97 139.07 -141.25
-2.06 -0.37 6.17 -1.58 3.73 53.28
1.55 0.20 -4.89 1.19 -2.98 95.75
0.96 -0.04 5.16 -3.11 1.24 -138.61
0.17 -1.07 -49.94 38.60 -4.78 209.23
42.74 -24.38 4.78 22.54 -13.43 7.71
-5.93 4.64 -7.69 4.95 -0.61 -110.37
1.76 -0.31 -8.37 0.47 -1.67 109.92
13.49 -23.58 37.23 31.93 19.85 1.04
-9.30 0.20 -1.94 0.69 -11.21 -259.97
-1.22 0.27 -13.00 9.24 -2.01 167.40
81.79 -39.06 41.34 -6.13 49.13 1.39
6.87 -4.06 -1.97 2.78 -0.81 6.95
-12.03 2.06 1.81 -0.83 -9.71 -37.38
7.36 -4.40 13.42 -6.00 8.51 -15.54
-184.74 57.70 17.69 -7.63 -99.20 31.47
-24.32 421 2324 6.59 -37.62 14.75
-2.63 1.11 3.66 -1.71 2.55 -89.86
87.28 -6.02 -32.93 -37.58 59.77 . 2.17
444 -2.66 0.63 -0.39 0.30 180.52
Table 4 Weights and biases for the T-Ricker pulse
Hidden layer Output layer
Wiy b, Wi b,
-5.25 -0.22 1.93 2.25 7.88 -21.43 -23.21
-12.80 31.92 19.25 17.92 -3.75 141 '
-16.04 40.28 46.34 -4.70 -12.12 -2.49
-43.11 21.36 46.52 28.29 0.53 -1.00
-20.81 1.70 -8.48 -24.31 -3.17 -16.54
5.45 -2.71 1.09 -0.03 2.38 54.10
347 -0.71 -1.82 0.82 1.86 62.68
3.83 3.08 3.03 -1.07 7.15 -6.27
-2.37 0.22 -1.79 3.53 093 86.55
-1.33 0.72 -1.84 -0.22 -3.46 . 11136
-12.03 0.52 -0.49 0 1.33 -12.13 --75.82
-3.02 0.40 0.36 <-1.33 -2.51 -85.94
-33.19 -38.28 32.12 20.55 42.02 -1.97
1.61 -1.31 -1.63 0.32 0.63 52.90
40.44 34.26 -0.09 -12.24 0.33 -1.82
6.50 12.62 9.21 9.03 1.97 2.85
5.1 9.37 0.80 6.09 -2.51 1.72
-11.58 3.46 4.96 -~13.40 -25.10 -17.07
4.97 -0.04 0.58 -1.37 4.57 56.65
-8.91 -2.11 19.95 -27.04 19.37 -0.89




224 EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol.4

Table 5 Weights and biases for the rectangular pulse

Hidden layer

Output layer

Wli,j bli wZi bZ

-9.21 15.30 -13.56 5.86 3.27 -26.07 -14.09
2.56 8.10 . -4.61 1.78 -9.99 -19.78
-9.96 -1.17 9.17 -7.68 595 -34.40
-13.03 6.71 -6.09 1.64 -6.50 -25.00
-10.42 -2.11 428 0.91 -9.91 37.41
-5.02 1.74 -0.30 -1.34 -4.15 -81.91
-1.88 1.04 -7.29 -0.02 -6.50 -25.34
11.75 -2.31 -4.25 3.12 8.75 65.73
-0.91 -0.45 -4.28 7.21 3.17 136.82
-8.18 -18.29 -0.80 -23.59 1.82 -2.12
-5.55 5.61 -1.70 3.05 3.78 -24.91
15.14 -5.08 -1.35 1.78 9.40 57.54
7.03 -0.09 -16.98 -0.70 -11.35 75.11
-9.55 0.64 7.87 -2.23 -3.04 -86.85
-9.94 -3.55 -0.43 -1.95 4.80 -16.81
-25.81 1.40 3.25 0.84 -20.88 -72.39
-12.43 -0.25 3.24 1.53 -7.56 -35.13
-54.03 3.32 3.79 0.41 -47.31 -98.75
41.58 1.38 431 -2.51 45.34 94.90
11.60 -1.97 4.06 -1.85 10.76 -23.75

/ 2m). Comparison is given between results from exact
solution (crosses) and those computed with the neural
network model (solid line). The comparison is generally
very good, except to that the neural network modeling can
not capture the very narrow safe zone between the two
overturning areas, in the frequency range 1-1.7 Hz. This
difference is because only a few input data are associated
with this narrow zone, which are thus treated as a noise
by the neural network during the training process. The
effect of this data on the resulting output is ignored
by the neural network, in the frame of generalization.
Admittedly, however, the practical significance of this
small discrepancy is indeed negligible, as engineering
design can hardly rely on this zone for a safe design.

The plots in Figs. 9(b)-(e) are as of Fig 9(a), but for
the one—cycle cosine, the Ricker, the T-Ricker, and the
rectangular pulse, rather than the one—cycle sinus. The
comparison is satisfactory and in some cases excellent.

To investigate the destructiveness of the five studied
pulses, the overturning acceleration spectra of all of
them are compared in Fig 10. The more destructive a
pulse, the larger the overturning area (in the frequency
domain). The rectangular pulse is obviously the most
destructive, followed by the T—Ricker, the one—cycle
sinus, the Ricker, and finally the one—cycle cosinus
pulse (which is by far the least harmful). This is as
anticipated, considering the rather “static” nature of
the rectangular and T-Ricker pulses. Note that only the
first overturning mode (i.e., after one impact) is possible
with T-Ricker and rectangular excitation because of their
unidirectional nature.

Having validated the neural network against the

exact solution, we utilize it to compute the overturning
response of a rigid block for two different sizes (as a
combination of parameters a_and p). For a block with b
=0.09 mand £ =0.56 m (a_= 0.16g, p = 3.38 rad/s),
and one with b =3 mand #=10m (a_ = 0.30g) ,p =
0.8 rad/s which are representative values of a cemetery
tomb, and a slender 6-story building, respectively. The
results associated with each of the five pulses are plotted
in Figs. 11(a) to (e), along with the results of the previous
case study (b =0.32mand =129 m,ie a =025g,
p = 2.14 rad/s), for comparison. The latter values are
representative of an electrical transformer block (Makris
and Roussos, 2000). It is evident from these figures that
the larger the block the more difficult is to overturn.

6 Application to real records and conclusions

The developed neural network model is further
utilized to assess the “destructiveness” of two recorded
near—fault accelerograms. To this end, the response of
a whole spectrum of rigid blocks (i.e. of combinations
of h and b) is excited at the base with each of these
accelerograms. The combination of slenderness ratios,
h/b, and size parameters, 1/p (~./R ), that are needed
for the block to just fail by overturning are obtained by
numerical solution. The results are plotted as /b versus
1/p diagrams, such as those shown in Figs. 11(a) to (e).
These diagrams differ from the “Overturning—Accelera
tion Amplification” spectra and the “Angle of Rotation”
spectra that have been presented so far in this paper, in
that the input accelerogram is fixed and no response
quantity is plotted — only the “fatal” combination of
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Neural network Neural network
3.5 = Exact solution 3.5 1 Overturning ./ x Exact solution
3 3 | area f
2.5 25
) . C)
) Overturning . 2 Safe area
V:‘” 15 area < 1.5
1 1
05 Safe area 0.5
0 0.5 1 1.5 2 25 3 0 0.5 1 1.5 2 25 3
Jf(Hz) f(Hz)
(a) One—cycle sinus acceleration pulse (b) One—cycle cosinus acceleration pulse
4 Neural network 4
3.5 | « Exact solution 35 Neural network
x Exact solution
3 ; 3
25 Overturning " 25
3% 2 area 2 % 2
< ~ Overturning
1.5 Safe area 1.5 area
1 1
0.5 . 0.5 - Safe area
0 : 0 ‘
0 0.5 1 1.5 2 25 3 0 0.5 1 1.5 2 25 3
Sf(Hz) f(Hz)
(c) Ricker acceleration pulse (d) T-Ricker acceleration pulse
4
35 Neural network
) x  Exact solution
3
2.5
C) .
Y 2 Overturning
<~ 15 area
1
0.5 Safe area

0

0 0.5 1 1.5 2 25 3
f(Hz)
(e) Rectangular acceleration pulse

Fig. 9 Overturning acceleration spectrum of a free standing rigid block with semi—width of b = 0.32 m and semi-height of 1 =
1.29 m (a, =0.25 g, p = 2.14 rad/s) and coefficient of restitution r = 0.8 subjected to different acceleration pulses with
frequency f. Comparison between exact solution and artificial neural network approximation

Ay (8)

0 o5 1 15 2 25 3
J(Hz)

Fig. 10 Overturning acceleration spectras of a free standing rigid block with semi—width of 5 = 0.32 m and semi-height of # =1.29
m (a, =0.25 g, p = 2.14 rad/s) and coefficient of restitution » = 0.8 subjected to five acceleration pulses with frequency f,
computed by the artificial neural network
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(a) One—cycle sinus acceleration pulse
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(¢) Ricker acceleration pulse
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(b) One—cycle cosinus acceleration pulse

3
Overturning area

A, (8)

s (H2)

[(d) T-Ricker acceleration pulse

Overturning area

)

(e) Rectangular acceleratloh pulse .

Fig. 11 Overturning acceleration spectras of a free standing rigid block with three different sizes representative of a (i) cemetery
tomb of b = 0.09 m and & = 0.56 m (a_=0.16 g, p = 3.38 rad/s), (ii) electrical transformer block of 5 = 0.32 m and s = 1.29
m (e =0.25 g, p = 2.14 rad/s) and (111) slender bulldmg of 5=3 mand 2 =10 m (&, =0.3 g, p = 0.76 rad/s), computed with

the neural network. The block or the building is subjected to dlfferent acceleration pulses at its base

block geometric parameters 4/b and 1/p.

The two accelerograms investigated are components
of: (a) the Diizce record (Kocaeli 1999 earthquake)
which is representative of fault-normal ground motions
affected by forward—rupture directivity and (b) the
Sakarya record (Kocaeli 1999 earthquake) which is
representative of fault—parallel motions affected by
permanent offset (“fling”)

Simple pulses, of the type studied in this paper, are
then fitted to these two records. To this end, use Fourier

analysis and suitable filtering, along with an optimisation
technique. The description of this process lies beyond
the scope of this paper. What interest us here is that the
following two pulses are obtained :

e aRicker wavelet with 4,,=0.33 g and /= 0.88 Hz
for the Diizce record, as aIready explained in Fig. 6.

¢ a T-Ricker wavelet with 4,, =0.33 g and /= 1.27
Hz for the Sakarya record.

The neural network analysis for these two pulses
gives the results plotted as a sequence of circular dots
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(a) Under two excitations: (i) the Duzce record (Kocaeli 1999
earthquake), and (ii) a suitably fitted (“equivalent”) Ricker
wavelet

Fig. 12
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(b) Under two excitations: (i) the Sakarya record (Kocaeli

1999 earthquake), and (ii) a suitably fitted (“equivalent™)
T-Ricker wavelet

Relationship between slenderness ratio and size para-meter (1 / p) required for the overturning of a rigid block.

Comparison between numerical solution for (i) [plotted with continuous lines] with the neural network results for (ii)
[plotted as sequence of circular dots]. The “islands” of the numerical solution represent either unexpected survival of the
block when located above the continuous solid line (i.e., within the overturned area), or “premature” overturning when
located below the continuous line (i.e., within the safe area)

in the “fatal combination of A/b—versus—1/p” diagrams
in Figs. 12(a) and (b), respectively; they are compared
with the results of the numerical analysis for the two
complete records of Diizce and Sakarya (plotted as
continuous lines). :

The following conclusions can be drawn:

(a) The performance of our neural network modeling
(along with the two simple pulses) is quite satisfactory.
The results plot as relatively smooth curves, around
which the exact numerical results fluctuate. For design
purposes, when the details of the ground motion cannot
be possibly predicted, use of an appropriate simple pulse
with the developed neural network analysis would be the
best engineering solution.

(b) The nearly chaotic nature of overturning of a
block on rigid foundation subjected to actual ground
motions is revealed from the presence of “safe islands”
within the Overturned region of the two diagrams, and
the rapid fluctuations of the basic curve delineating the
“Safe” and “Overturned” regions.

(c) The Diizce record is more destructive than the
Sakarya record for blocks with slenderness ratio less
than 10, but less destructive for slenderness ratios larger
than 10. The undoubtedly richer in high—frequency

components Sakarya record increases the risk of
overturning of an extremely slender structure.
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